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Summarizing  Data  in  Simple  Patterns 
 

Information Technology    collection of huge data sets, 
often multi-way data  z(i,j,k,…) 

 
 

Approximation:  Multi-way data  simple patterns 

 
 data interpretation (psychometrics, neuro-imaging,  

data mining) 
 

 separation of chemical compounds (chemometrics) 

 separation of mixed signals (signal processing) 

 faster calculations (algebraic complexity theory,  
scientific computing) 
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Simple  structure  =  rank 1 
 
2-way array = matrix  Z  (I×J)  with entries  z(i,j)  
 

rank 1:   Z = a bT = a ๐ b        z(i,j) = a(i)۰b(j) 
 
rank(Z) = min {R :  Z  =  a1๐b1 + … + aR ๐bR } 
 
 
3-way array  Z  (I×J×K)  with entries  z(i,j,k) 
 

rank 1:   Z = a ๐ b ๐ c       z(i,j,k) = a(i)۰b(j)۰c(k) 

 
rank(Z) = min {R :  Z  =  a1๐b1๐c1 + … + aR ๐bR ๐cR } 
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2-way  (PCA)  decomposition 
 

     

      

     =       +  …  +          + 

 

 
 

Z  =  a1 ๐ b1 +  …  +  aR ๐ bR  +  E  

 =  A BT + E     with  A = [a1 … aR]   
              B = [b1 … bR]  

 
Goal:  Find  (A,B)  that minimize  ssq(E) 
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3-way  Canonical Polyadic Decomposition (CPD) 
 

   

     

      

      =          + … +     + 

 

 

 
Z  =  a1 ๐ b1 ๐ c1  +  …  +  aR ๐ bR ๐ cR  +  E 

 
 
 

Goal:   Find  (A,B,C)  that minimize  ssq(E)  

with  C = [c1 … cR]  
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* Kruskal (1977) and many more since 2000 

 3-way CPD 2-way PCA 

computation iterative algorithm SVD 

best rank-R 
approximation 

yes yes 

rotational 
uniqueness 

under mild 
conditions * 

no 

existence for  
R < rank(data) 

not guaranteed yes 
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3-way  CPD  as  Optimization  Problem 
 
 

Minimize   ssq(Z – Y) 

            over  SR = { Y :  rank(Y) ≤ R } 

      

  if  Z  SR , then an optimal solution X  (if it exists)  

will be a boundary point of SR   
 
But :  the set SR  is not closed for R ≥ 2 

 

Bini et al. (1979), Paatero (2000), Lim (2004)  
De Silva & Lim (2008) 
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A  misleading  picture 
 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

 

set SR 
 

rank ≤ R 

•  Z   X 

    updates Y 

rank > R 
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Suppose  Y = (A,B,C)         optimal X  and  X  SR 

 
 

Then some rank-1 terms  ar๐br๐cr  converge to 

linear dependency  and  infinite norm 

 
 diverging components  (“degeneracy”) 

 
 
Also :  slow convergence of iterative CPD algorithm  
 
 
Harshman & Lundy (1984), Kruskal et al. (1989), Krijnen et al. 
(2008), Stegeman & De Lathauwer (2011) 
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Two diverging components 
 
 

Y(s) = as ๐ bs ๐ cs   Y(t) = at ๐ bt ๐ ct  
 
 
 
 
 
 
 
 

 
Y(s) +  Y(t)  remains “small” and contributes to  

a better CPD fit 

Vec(Y(t)) 

Vec(Y(s)) 
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Remarks on diverging components 
 
  CPD sequence (A,B,C) may contain several groups of   
   diverging components 
 
  In each group of diverging components  
   cos(as,at)۰cos(bs,bt)۰cos(cs,ct)  is close to ±1  (a.e.) 
 

  For random data Z diverging components occur very 
   often (up to 60-100%) 
 
  Diverging components cannot be interpreted and must  
   be avoided when interpretation is the goal 
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Best low-rank approximation of I×J×2 arrays 

Stegeman (2013b) 

Z rank(Z) R Best rank-R ? 

I = J I+1 R = I zero volume 

I = J I+1 R < I pos. volume 

I = J I R < I pos. volume 

I > J min(I,2J) (I,2J) > R > J 
almost 

everywhere 

I > J min(I,2J) R = J pos. volume 

I > J min(I,2J) R < J pos. volume 
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How to avoid diverging CPD components (1) 
 
  make sure an optimal CPD solution exists 
 

  A, B or C is constrained to have orthogonal columns         
   (Harshman & Lundy, 1984; Krijnen et al., 2008) 

 
  Z is nonnegative and A, B and C are constrained to   
   be nonnegative (Lim, 2005; Lim & Comon, 2009) 

 
  Constraining  cos(as,at)۰cos(bs,bt)۰cos(cs,ct) 
   (Lim & Comon, 2010) 

 

  Add penalty term for deviations from orthogonal A,B,C  
    (Rocci & Giordani, 2013) 
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How to avoid diverging CPD components (2) 
 
 
  change the CPD problem into:    (De Silva & Lim, 2008) 

 
Minimize   ssq(Z – Y) 

        over  closure of SR  
 

 

What is needed? 
 
 Complete characterization of boundary points 

  Algorithm to find an optimal boundary point 
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Boundary points and algorithms are known for : 
 
 
  I×J×K  and  R=2   

via constrained HOSVD/Tucker3 of size 2×2×2 
(Rocci & Giordani, 2010) 

 

  I×J×2  and  R ≤ min(I,J)   
via Generalized Schur Decomposition 

(Stegeman & De Lathauwer, 2009; Stegeman, 2010) 
 

  in both cases we do not need a CPD algorithm ! 
 

  in both cases the solution can be transformed to CPD  
     form when no diverging components occur 
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Finding the optimal boundary point in general 
 
Each group of diverging CPD components has a limit with 
a specific decomposition form 
 
For R=2 diverging components:  (A,B,C)  (S,T,U)۰G 
 

with   G = 









00

10

10

01

  and    rank(G) = 3 

 
 

(S,T,U)۰G  =  (s1๐t1๐u1) + (s2๐t2๐u1) + (s1๐t2๐u2) 
 

De Silva & Lim (2008) 
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R=3 or 4 diverging components:   (A,B,C)  (S,T,U)۰G 
 

G = 














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   and  rank(G) = 5 

 

G = 
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and  rank(G) ≥ 7 

Stegeman (2012, 2013a) 
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For several groups of diverging components or a 
combination of diverging and nondiverging components:  
 
add the terms to obtain a decomposition of the limit X 
 
Algorithm 

1. Run a CPD algorithm, obtain solution (A,B,C).  
2. When diverging components occur, order them in 

groups and determine decomposition form of limit X. 
3. Compute initial values for decomposition of X from 

(A,B,C). 
4. Fit decomposition form of X to data Z using initial 

values from (A,B,C). Simple ALS algorithm ! 
 
Stegeman (2012, 2013a), Kiers & Smilde (1998) 



 19 

Numerical Example:  6×6×6  and  R=6 
 
CPD ALS with tolerance 1e-9 terminates after 19.645 iters 
 
Y = (A,B,C)  has 2+3 diverging components 
 
ssq(Z – Y) = 54.5370      
 
fit model   Z  =  (s1,t1,u1)  +  (S2,T2,U2)۰G2 +  

(S3,T3,U3)۰G3  +  E
      

 
 
ssq(Z – X) = 54.5336,   tolerance  1e-12,  137 iters 
 
condition numbers of  S, T, U  are:  21.8,  6.3,  61.0 
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Application:  CPD analysis of TV-ratings  (1981) 
 

 
15 TV shows  x  16 Rating Scales  x  30 Persons 
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15  TV shows 
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16  Rating Scales 
 

  1.  Thrilling / Boring     13. Deep / Shallow 
  2.  Intelligent / Idiotic     14. Tasteful / Crude 
  3.  Erotic / Not Erotic     15. Real / Fantasy 
  4.  Sensitive / Not      16. Funny / Not 

5. Interesting / Not 
6. Fast / Slow 
7. Intellectually Stimulating / Dull 
8. Violent / Peaceful 
9. Caring / Callous 
10. Satirical / Not 
11. Informative / Not 
12. Touching / Leaves Me Cold 
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CPD with R=3 yields two diverging components 
 
Fit = 50.76 %     Comp.3 = “Humor”  (24.38 %) 
 
Comps. 1 & 2  have   triple cosine = -0.996 
         ssq ≈ 100۰ssq(comp.3) 
 
Try CPD with R=3 and orthogonal TV show components: 
 
Fit = 50.22 %     “Humor”   27.19 % 

“Sensitivity”  13.04 % 
“Violence”    9.99 % 

 
 
Lundy et al. (1989), Harshman (2004) 
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Decomposition of the limit X in 4 terms 
 
Fit = 50.7571 %  (50.7569  for R=3 unconstrained)  
 
X = (s1๐t1๐u1) + (s2๐t2๐u1) + (s1๐t2๐u2) + (s3๐t3๐u3) 

 

(s1๐t1๐u1):   “Violence”        7.62 %    

(s2๐t2๐u1):   “Sensitivity”  10.75 %    

(s1๐t2๐u2):   interaction        1.55 %    

(s3๐t3๐u3):   “Humor”    24.37 %    

 
Stegeman (2014) 
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Final Remarks 
 
 
  Avoid diverging CPD components by either imposing  

 constraints (orthogonality, nonnegativity) or including  
     the boundary of the rank-R set 
 
  When constraints are not appropriate, finding the  

 optimal boundary point X and its decomposition is a  
   good alternative 

 
  For the TV-ratings data, the decomposition of the  

 optimal boundary point X yields interpretable oblique  
 components 
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