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Summarizing Data in Simple Patterns

Information Technology =» collection of huge data sets,
often multi-way data z(i,j,k,...)

Approximation: Multi-way data ~ simple patterns

e data interpretation (psychometrics, neuro-imaging,
data mining)

e separation of chemical compounds (chemometrics)
e separation of mixed signals (signal processing)

e faster calculations (algebraic complexity theory,
scientific computing)



Simple structure = rank 1

2-way array = matrix Z (IxJ) with entries z(i,j)
rank1: Z=ab ' =aob €2 Zzij)=a(i)-b()

rank(Z) = min{R: Z = a;ob; + ... + arobg }

3-way array Z (IxJxK) with entries z(i,j, k)

rankl: Z=aoboc €= 2z(ijk)=a(i).-b{).c(k)

rank(Z) = min {R Y A a;obioc; + ... + arobr OCR}



2-way (PCA) decomposition

b, br

di dRr

a;obi+ ... + arobr + E
AB' +E with

Find (A,B) that minimize ssq(E)
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+

A = [a; .. ag]
B = [b1 bR]



3-way Canonical Polyadic Decomposition (CPD)
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Z

a;objoc; + ... + aRobrocy + E

Goal: Find (A,B,C) that minimize ssq(E)
with C = [¢; ... Cg]



3-way CPD 2-way PCA

computation iterative algorithm SVD
best rank-R yes yes
approximation
rotational under mild no
uniqueness conditions *
existence for not guaranteed yes

R < rank(data)

* Kruskal (1977) and many more since 2000



3-way CPD as Optimization Problem

Minimize ssq(Z-Y)
over Sp={Y: rank(Y) <R}

= if Z & Sgr, then an optimal solution X (if it exists)
will be a boundary point of Sg

But : the set Sk is not closed for R = 2

Bini et al. (1979), Paatero (2000), Lim (2004)
De Silva & Lim (2008)



A misleading picture

set Sy

rank < R

updates Y o

rank > R

IN




Suppose Y = (A,B,C) —— optimal X and X & Si

Then some rank-1 terms a,ob,oc, converge to

linear dependency and infinite norm

= diverging components (“'degeneracy”)

Also : slow convergence of iterative CPD algorithm

Harshman & Lundy (1984), Kruskal et al. (1989), Krijnen et al.
(2008), Stegeman & De Lathauwer (2011)



Two diverging components

Y® = a. o b o C. YV = a;0 b o ¢
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Y® + YO remains “small” and contributes to
a better CPD fit

10



Remarks on diverging components

e CPD sequence (A,B,C) may contain several groups of
diverging components

e In each group of diverging components
cos(as,a:) * cos(bg,b:) + cos(c,c:) is close to £1 (a.e.)

e For random data Z diverging components occur very
often (up to 60-100%)

e Diverging components cannot be interpreted and must
be avoided when interpretation is the goal
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Best low-rank approximation of I1xJx2 arrays

y 4 rank(Z) R Best rank-R ?
I=1] I+1 R=1 zero volume
I=1] I+1 R<I pOsS. volume
I=1] I R<I pOsS. volume
1>3 | mn@2) | @2))>R>3 almost

everywhere
I>] min(I,2]) R=] pos. volume
I>] min(I,2]) R<] pOS. volume

Stegeman (2013b)
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How to avoid diverging CPD components (1)

=» make sure an optimal CPD solution exists

e A, B or Cis constrained to have orthogonal columns
(Harshman & Lundy, 1984; Krijnen et al., 2008)

e Z is nonnegative and A, B and C are constrained to
be nonnegative (Lim, 2005; Lim & Comon, 2009)

e Constraining cos(as,at)*cos(b,b;)+cos(c,, ;)
(Lim & Comon, 2010)

e Add penalty term for deviations from orthogonal A,B,C
(Rocci & Giordani, 2013)
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How to avoid diverging CPD components (2)

=» change the CPD problem into: (De Silva & Lim, 2008)

Minimize ssq(Z-Y)

over closure of Sg

What is heeded?

=» Complete characterization of boundary points

= Algorithm to find an optimal boundary point
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Boundary points and algorithms are known for :

e IXIJXK and R=2

via constrained HOSVD/Tucker3 of size 2x2x2
(Rocci & Giordani, 2010)

e IXJx2 and R < min(I,J)

via Generalized Schur Decomposition
(Stegeman & De Lathauwer, 2009; Stegeman, 2010)

e in both cases we do not need a CPD algorithm !

e in both cases the solution can be transformed to CPD
form when no diverging components occur
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Finding the optimal boundary point in general

Each group of diverging CPD components has a limit with
a specific decomposition form

For R=2 diverging components: (A,B,C) - (S,T,U)-G

with G=1]0 1|0 0 and rank(G) = 3

(S,T,U):G = (siotiou;) + (sot,ou;) + (s;ot,ou,)

De Silva & Lim (2008)
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(AB,C) > (STU)-G

R=3 or 4 diverging components:

and rank(G) = 5
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and rank(G) = 7

Stegeman (2012, 2013a)
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For several groups of diverging components or a
combination of diverging and nondiverging components:

add the terms to obtain a decomposition of the limit X

Algorithm

1. Run a CPD algorithm, obtain solution (A,B,C).

2. When diverging components occur, order them in
groups and determine decomposition form of limit X.

3. Compute initial values for decomposition of X from
(A,B,C).

4. Fit decomposition form of X to data Z using initial
values from (A,B,C). Simple ALS algorithm !

Stegeman (2012, 2013a), Kiers & Smilde (1998)
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Numerical Example: 6x6x6 and R=6

CPD ALS with tolerance 1e-9 terminates after 19.645 iters
Y = (A,B,C) has 2+3 diverging components
ssq(Z—-Y) = 54.5370

ﬂt model Z — (slltllul) + (SZITZIUZ)‘QZ-F
(S3IT3IU3)’g3 + E

ssq(Z — X) = 54.5336, tolerance 1le-12, 137 iters

condition numbers of S, T, U are: 21.8, 6.3, 61.0
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Application: CPD analysis of TV-ratings (1981)

Mode A Bl
TV-Show TVj e
Mode { Shows=

Mode C
Person Mode

Mode B
Rating Scale Mode

15 TV shows x 16 Rating Scales x 30 Persons
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MASH

(IlARllE'S

15 TV shows
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16 Rating Scales

Thrilling / Boring 13. Deep / Shallow
Intelligent / Idiotic 14. Tasteful / Crude
Erotic / Not Erotic 15. Real / Fantasy
Sensitive / Not 16. Funny / Not
Interesting / Not

Fast / Slow

Intellectually Stimulating / Dull

Violent / Peaceful

Caring / Callous

10 Satirical / Not

11.Informative / Not

12.Touching / Leaves Me Cold

Lo NOOLAWN
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CPD with R=3 yields two diverging components

Fit = 50.76 % Comp.3 = “"Humor” (24.38 %)

Comps. 1 & 2 have triple cosine = -0.996
ssq =~ 100+ssqg(comp.3)

Try CPD with R=3 and orthogonal TV show components:

Fit = 50.22 % “Humor” 27.19 %
“Sensitivity” 13.04 %
“Violence” 9.99 %

Lundy et al. (1989), Harshman (2004)
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Component 1 = "Humor”

[V shows mode Scales mode
Sat rdav Hl,g Live
15¢
lI'( Jv Satirical
lin th 2
1 _ALe"JI'on?g t S gw
Funny
Mash
051 1 5 |Fantasy
0k Ero tllq_:
Uninformative
1F
05 ¢ Idiotic/Dull
Shallow/Crude
1r ¢ 05k
Iﬂlﬁge om

ews
-15Jacques Cousteau




Component 2 = "Sensitivity”

TV shows mode

2 —Iﬂﬁfﬁggg‘g on the Prairie

15¢F

Mork and Mindy
05F

05F
Charlie's Angels

'News/Saturday Night Live

-15 'Football

Scales mode

Caring/Peaceful / Sensitive

15F

Touching/Tasteful
1 1 Slow/Boring

Deep
05
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Component 3 = “Violence”

TV shows mode

'Charlie's Angles

Kojak

Football
Let's Make a Deal

60 Minutes

-1 rFAll in the Family

Jacques Cousteau

‘" The Tonight Show
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1.5

05

Scales mode

Violent

Erotic

-

Uninformative
Intellectually Dull

Idiotic/Uninteresting
Fast

T
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Decomposition of the limit X in 4 terms

Fit = 50.7571 %  (50.7569 for R=3 unconstrained)

X = (s;otiouy) + (sot,ouy) + (s10t0u,) + (S30t30U5)

(s;otjou,y): “Violence” 7.62 %
(s,otou,): “Sensitivity” 10.75 %
(s;ot,ou,): interaction 1.55 %
(s3otz0U3): “Humor” 24.37 %

Stegeman (2014)



Final Remarks

e Avoid diverging CPD components by either imposing
constraints (orthogonality, nonnegativity) or including
the boundary of the rank-R set

e \When constraints are not appropriate, finding the
optimal boundary point X and its decomposition is a
good alternative

e For the TV-ratings data, the decomposition of the
optimal boundary point X yields interpretable oblique
components
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